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Influence of Transceiver Array Aperture Size on
Electromagnetic Linear Inverse Scattering
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Abstract— This article studies the effect of transceiver array
aperture size on the inversion ability of the linear integral
equation-based solver for the electromagnetic (EM) reconstruc-
tion of 2-D scatterers embedded inside a planarly multilayered
medium. The investigation is performed in three steps. First,
we derive the analytical relationship between the spectra of the
scattered electric fields at the receiver array and the recon-
structable 2-D scatterer spectrum, which is composed of four
different spectral components. This is completely different from
the single spectral component for the 2-D scatterer directly
placed in a homogeneous subsurface region. Second, the singular
value decomposition (SVD) is adopted to compute the discretized
integral operator’s right-singular function whose spectrum can
also reflect the reconstructable 2-D scatterer spectrum but with
the wave attenuation and evanescent mode contribution taken
into account. The obtained spectrum shows a “bandstop” feature
in the vertical direction with a decrease in the transceiver array
aperture size, which is totally different from the “bandpass”
feature for the 2-D scatterer embedded in the homogeneous
subsurface region. Third, the features of the reconstructable
spectrum of the 2-D scatterer embedded inside a planarly
multilayered medium, especially the “bandstop” feature, are
validated in a series of numerical experiments.

Index Terms— Electromagnetic (EM) inverse scattering, full-
wave inversion (FWI), multilayered media, transceiver array
aperture size.

I. INTRODUCTION

ELECTROMAGNETIC (EM) inverse scattering, some-
times also called EM full-wave inversion (FWI), is to

infer the model parameters of unknown objects from the scat-
tered field data recorded at the receiver array [1]. The related
research in the early days was only focused on the recon-
struction of simple models with small electrical sizes and
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inversion of an extremely limited number of model param-
eters. For example, in [2] and [3], only one 1-D constitutive
parameters of inhomogeneous scatterers were reconstructed by
simple alternative iteration methods in the time domain and
the frequency domain, respectively. In later research, more
sophisticated iterative methods are proposed and used to deal
with complicated EM scattering problems, e.g., 2-D or 3-D
inhomogeneous and anisotropic scatterers with large electrical
dimensions [4], [5]. The commonly used approaches can be
roughly divided into two categories, the integral equation (IE)-
based and differential equation (DE)-based ones, according
to the forward scattering solvers employed in the alternative
iterations. Typical IE-based approaches include Born iterative
method (BIM) [6], distorted BIM (DBIM) [7], variational BIM
(VBIM) [8], contrast source inversion (CSI) [9], [10], and
subspace optimization method (SOM) [11], as well as some
hybrid ones [12], [13]. They have wide applications in both
academic researches [14], [15], [16], [17] and engineering
problems, e.g., underground abnormal object inspection [18]
and human tissue anatomy [19]. These IE-based inverse scat-
tering methods have the intrinsic merit that the inversion
domain can tightly wrap the unknown objects and thus the
degree of freedom in inversion is limited. However, because
the inversion domain and the transceivers are linked by
Green’s functions, the background medium must be regu-
lar (e.g., homogeneous, planarly layered, etc.) to guarantee
their computability. The DE-based EM FWI uses DEs, e.g.,
Helmholtz equation, to describe wave propagation and thus
can adapt to any irregular background media. Commonly used
inversion algorithms include the nonlinear conjugate gradient
(NLCG) method [20], the quasi-Newton (QN) method [21],
and the Gauss–Newton (GN) method [22]. And they have been
successfully applied to both 2-D [23] and 3-D [24] geophysical
inversions.

Most of these research works are focused on the improve-
ment of the FWI methods and their applications to engineering
problems, e.g., microwave imaging and geophysical explo-
ration. Another important research branch in EM wave
imaging and inversion that has drawn the intensive attention
of researchers in the past decades is the influence of the
transceiver array layout on the inversion performance. It is
mainly achieved by quantitatively analyzing the relationship
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between the reconstructable spectrum bandwidth of subsurface
2-D scatterers and the transceiver array aperture size [25].
By analytically correlating the reconstructable scatterer spec-
trum with the scattered field spectrum at the receiver array
via linearizing the integration equation and a series of Fourier
transforms, researchers first acquire the reconstructable spec-
trum range through guaranteeing the valid wavenumbers of
both incident and scattered waves. Then, for more practi-
cal EM scattering and inverse scattering scenarios with the
wave attenuation and evanescent mode contribution consid-
ered, the singular value decomposition (SVD) is adopted to
numerically compute the discretized integral operator’s right-
singular function whose spectrum also represents the scatterer
reconstructable spectrum. Finally, FWI of scatterers with low
contrasts is implemented in numerical examples to verify
the theoretical analysis and SVD results. This complete set
of methods was later also used to analyze and validate the
influence of transceiver spatial offsets [26], frequency hopping
step [27], [28], and the real antenna radiation pattern [29] on
the 2-D reconstructable spectrum of the subsurface scatterers.
However, in most of these works, the background medium
is assumed to be a homogeneous model or a simple half-
space model, which is far from the real situations in many
EM inversion applications.

In this article, we extend the previous works to a more real-
istic EM scattering scenario for which the 2-D scatterers are
placed inside a planarly multilayered medium. Compared with
previous works, this work has the following new contributions.

1) A completely different spectral relationship between
scattered electric fields at the receiver array and the
2-D scatterers is derived based on the multilayered
medium Green’s functions. The reconstructable scatterer
spectrum is weighted by a group of coefficients that
depend on the multiple reflections and transmissions in
multiple layer boundaries.

2) The computed reconstructable spectrum is not single.
Instead, it is composed of four different components that
correspond to four different incident and scattered EM
wave propagation pictures inside the inversion domain,
which actually is caused by multiple reflections and
transmissions in multiple layer boundaries.

3) The obtained overall reconstructable spectrum shows a
“lowpass” feature in the horizontal direction with the
decrease in the array aperture size, which is the same
as that for the half-space model given in the previous
work. However, in the vertical direction, the overall
reconstructable spectrum shows a “bandstop” feature
instead of the “bandpass” feature.

4) The “bandstop” feature of the overall spectrum is suc-
cessfully validated by numerical examples based on
Born approximation.

The organization of this article is as follows. In Section II,
the analytical relationship between the scattered electric field
spectrum at the receiver array and the spectrum of the 2-D
scatterer placed inside a planarly multilayered medium is
derived. Then, the influence of the transceiver array aper-
ture size on the bandwidth of the reconstructable spectrum
is analyzed theoretically in Section III, analyzed by SVD

Fig. 1. Configuration of the 2-D EM inverse scattering from inhomogeneous
scatterers embedded in the mth layer of a multilayered medium. The inversion
domain D enclosing the scatterer has the dimensions of 2a × 2c.

in Section IV, and validated by numerical experiments in
Section V, respectively. Finally, in Section VI, the conclusion
and the possible future work are presented.

II. LINEAR INVERSE SCATTERING FROM 2-D OBJECTS
EMBEDDED IN A PLANARLY MULTILAYERED MEDIUM

As shown in Fig. 1, the background 2-D space is sep-
arated by a series of parallel planar interfaces located at
z = z1, z2, . . . , zn . The 2-D scatterer is completely embedded
inside the mth layer which has the complex relative permit-
tivity ϵb = εm

b + (σm
b /jωε0) and the permeability µ0. The

inhomogeneous scatterer with the spatially varying relative
permittivity εs(ρ) and conductivity σs(ρ) is placed inside
the rectangular inversion domain D with the dimensions of
2a × 2c. The upper surface of the domain D is zmin away
from the interface z = zm−1 and the lower surface is also zmin
away from the interface z = zm . Both the transmitter array
located at z = zs and the receiver array located at z = zr have
the horizontal sizes 2xM . Note that they can be placed inside
the same background layer or in different layers. In addition,
one should note that the inversion domain D is intentionally
placed symmetrically in the vertical ẑ-direction inside the mth
background layer. Such a configuration is to guarantee that the
transceiver arrays have the same aperture sizes with respect to
the inversion domain when they are located on the same side
or two different sides of the inversion domain if their true
length 2xM values are the same. And this will be discussed in
Sections III–V.

Since we only consider the transverse electric (TE) mode,
i.e., both the transmitters and the receivers are infinitely long
in the ŷ-direction and both the background medium and the
inhomogeneous scatterers are invariant in the ŷ-direction, the
scattered electric field at a receiver point ρr = x̂ xr + ẑzr only
has the ŷ-component and is evaluated by

E sct
y (ρr ) = jωε0ϵb

∫
D

Gri
E J

(
ρr , ρ

)
χ(ρ)E tot

y (ρ)dρ (1)

where

χ(ρ) =
ϵs(ρ)− ϵb

ϵb
(2)

is the contrast of the 2-D scatterer with respect to the back-
ground medium, Gri

E J is the 2-D TE-mode layered medium
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Green’s function linking a field point ρ = x̂ x + ẑz inside
the inversion domain D and the receiver point ρr , and E tot

y is
the total electric field inside D when the inhomogeneous 2-D
scatterer is present. Note that (1) can be linearized based on
Born approximation as long as the contrast is low. Therefore,
for weak EM scattering scenarios, we have

E sct
y (ρr ) = jωε0ϵb

∫
D

Gri
E J

(
ρr , ρ

)
χ(ρ)E inc

y (ρ)dρ (3)

where E inc
y is the incident electric field inside the inversion

domain D when the 2-D scatterer is absent and it is evaluated
by

E inc
y (ρ) = G i t

E J

(
ρ, ρs

)
Jy(ρs) (4)

in which G i t
E J is the 2-D TE-mode layered medium Green’s

function linking the source point ρs = x̂ xs + ẑzs and the
field point ρ inside D and Jy is the current density of
the infinitesimal dipole transmitter at ρs . According to the
transmission line analogy method presented in [30], the 2-D
TE-mode layered medium Green’s functions can be computed
by the 1-D inverse Fourier transforms

Gri
E J

(
ρr , ρ

)
=

1
2π

∫
+∞

−∞

−V h
i (kx , zr , z)e− jkx (xr −x)dkx (5a)

G i t
E J

(
ρ, ρs

)
=

1
2π

∫
+∞

−∞

−V h
i (k

′

x , z, zs)e− jk ′
x (x−xs )dk ′

x (5b)

where V h
i is the spectral-domain voltage whose specific

expression can be seen in Appendix A. Note that the super-
script h stands for the TE mode and kx and k ′

x denote
the wavenumbers in the horizontal direction. The superscript
apostrophe means the EM wave is emitted from the source
point at (xs , zs). By substituting (5b) into (4), (5a) into (3),
and (4) into (3), we can obtain

E sct
y (ρr )

=
jωϵbε0

4π2

∫
D

∫
+∞

−∞

∫
+∞

−∞

V h
i (kx , zr , z)V h

i (k
′

x , z, zs)

· e− jk ′
x (x−xs )e− jkx (xr −x)dk ′

x dkx · Jy(ρs)χ(ρ)dρ

=
jωϵbε0

4π2

∫
D

∫
+∞

−∞

∫
+∞

−∞

V h
i (kx , zr , z)V h

i (k
′

x , z, zs) · Jy(ρs)

· e− j(k ′
x −kx)x · e jk ′

x xs · e− jkx xr dk ′

x dkxχ(x, z)dxdz (6)

where the detailed expression of V h
i (kx , zr , z)V h

i (k
′
x , z, zs) ·

Jy(ρs) can be seen in Appendix B. Then, we make following
definitions: 

η = k ′

x − kx

ζ1 = k ′

zm − kzm

ζ2 = k ′

zm + kzm

ζ3 = −(k ′

zm − kzm)

ζ4 = −(k ′

zm + kzm)

(7a)

χ̂
(1)
2 (η, ζ1) = χ̂

(1)
4 (η, ζ1) = χ̂

(2)
1 (η, ζ1) = χ̂

(2)
2 (η, ζ1)

= χ̂
(2)
4 (η, ζ1) =

∫
D
χ(x, z)e− jηx e− jζ1zdxdz (7b)

χ̂
(1)
1 (η, ζ2) = χ̂

(1)
3 (η, ζ2) = χ̂

(1)
5 (η, ζ2) = χ̂

(2)
3 (η, ζ2)

= χ̂
(2)
5 (η, ζ2) =

∫
D
χ(x, z)e− jηx e− jζ2zdxdz (7c)

χ̂
(1)
6 (η, ζ3) = χ̂

(1)
8 (η, ζ3) = χ̂

(1)
10 (η, ζ3) = χ̂

(2)
8 (η, ζ3)

= χ̂
(2)
10 (η, ζ3) =

∫
D
χ(x, z)e− jηx e− jζ3zdxdz (7d)

χ̂
(1)
7 (η, ζ4) = χ̂

(1)
9 (η, ζ4) = χ̂

(2)
6 (η, ζ4) = χ̂

(2)
7 (η, ζ4)

= χ̂
(2)
9 (η, ζ4) =

∫
D
χ(x, z)e− jηx e− jζ4zdxdz (7e)

and thus (6) can be rewritten as

E sct
y (ρr )

=
jωϵbε0

4π2

∫
+∞

−∞

∫
+∞

−∞

10∑
n=1

fn · χ̂n · e jk ′
x xs · e− jkx xr dk ′

x dkx

(8)

where fn can take f (1)n or f (2)n and χ̂n is the contrast spatial
spectrum which can take χ̂ (1)n or χ̂ (2)n . The superscript “(1)”
means the transmitter array and the receiver array are located
on the same side of the inversion domain D while the super-
script “(2)” means they are located on two sides. Note that fn

is actually the coefficient connecting χ̂n and the scattered field
spectrum at the receiver array. Its detailed expression can be
seen in Appendix B. One should note that, from a physical
point of view, the four ẑ-direction spectral variables ζ1, ζ2, ζ3,
and ζ4 in (7a) correspond to four different EM wave propaga-
tion pictures at a certain field point (x, z) inside the inversion
domain. The variable ζ1 depicts the incident wave arriving
at the field point in the +ẑ-direction and the scattered wave
escaping away from it also in the +ẑ-direction. In contrast, the
variable ζ2 depicts the incident wave arriving at the field point
in the +ẑ-direction but the scattered wave escaping away from
it in the −ẑ-direction. The variables ζ3 and ζ4 depict the wave
propagation pictures which are completely opposite to those
depicted by ζ1 and ζ2, respectively. Obviously, only ζ2 exists
for a two-layer model as discussed in the previous work [25]
since the EM wave reflection and transmission in multiple
layer boundaries vanish.

Finally, we assume that the transmitter continuously varies
its position in the z = zs horizontal line and the receiver also
continuously varies its position in the z = zr horizontal line
and define the spectrum of the scattered electric field at the
receiver array as

Ẽy
sct
(kx , k ′

x )

=

∫
+∞

−∞

∫
+∞

−∞

E sct
y (xs, xr )e− jk ′

x xs+ jkx xr dxsdxr (9)

and thus (8) can be expressed in a compact form

Ẽy
sct

= jωϵbε0 ·

10∑
n=1

fn · χ̂n (10)

in which the summation is caused by reflection and trans-
mission in multiple planar boundaries. In other words, the
reconstructable spectrum of the 2-D contrast not only depends
on the scattered EM waves directly propagating from the
scatterer to the receiver array but is also contributed by
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the waves generated from multiple boundary reflections and
transmissions. In addition, the coefficient fn which is also
closely related to boundary reflections actually weights the
reconstructable spectrum.

III. INFLUENCE OF TRANSCEIVER ARRAY APERTURE SIZE
ON 2-D FWI IN MULTILAYERED MEDIA:

THEORETICAL ANALYSIS

In this section, we give a theoretical analysis of how the
transceiver array aperture size influences the inversion of
2-D scatterers embedded in a planarly multilayered medium.
Specifically speaking, we evaluate the quantitative relationship
between the transceiver array aperture size and the spectrum
bandwidth of the reconstructable contrast χ not only for four
individual wave propagation pictures at the field point (x, z)
as described by ζ1, ζ2, ζ3, and ζ4 in (7a) but also for the
overall picture as described by the summation given in (10).
For convenience to perform theoretical analysis, we suppose
that the whole background space is lossless and is divided into
five layers by the horizontal interfaces located at z1 = −0.8 m,
z2 = 0.0 m, z3 = 3.16 m, and z4 = 3.66 m, respectively. The
relative permittivity parameters in five layers are ε1

b = 1.5,
ε2

b = 1.0, ε3
b = 9.0, ε4

b = 1.0, and ε5
b = 2.0, respectively. The

2-D scatterers are located inside the third layer (i.e., m = 3)
with σs(x, z) = 0. The operation frequency is 300 MHz. Other
parameters related to the inversion domain D are a = 0.75 m,
c = 0.92 m, and zmin = 0.66 m. The transmitter array and
the receiver array can be located on the same side of the
inversion domain D with zs = zr = z2 or on two different
sides with zs = z2 and zr = z3. Note that the transceiver
arrays are assumed to coincide with layer interfaces in this
work. Meanwhile, it is also assumed that the inversion domain
D is far enough from two adjacent horizontal interfaces at z =

z2 and z = z3, and thus the effect of the evanescent wave on
the computation of the theoretically reconstructable spectrum
of the 2-D scatterer placed between them is neglected. Here,
“theoretically” means the computed reconstructable spectrum
is only determined by the valid wavenumber ranges and the
effects of evanescent mode, noise contamination, subsurface
signal attenuation, and so on are neglected.

Therefore, let us now correlate the transceiver array aperture
sizes with the valid wavenumber ranges and quantitatively ana-
lyze their effects on the reconstructable spectrum of the 2-D
scatterer embedded inside a planarly multilayered medium.
We take the same approximation suggested in [25, Section III]
and assume the dominant energy of the EM wave propagating
between a fictitious equivalent source point inside the domain
D and a receiver point or a transmitter point like a plane wave.
Reducing the transceiver array aperture size, i.e., decreasing
xM , is equivalent to decreasing the array angle θx defined
in Fig. 2. Therefore, obeying the plane wave assumption
mentioned above, the valid wavenumbers automatically satisfy

|k ′

x |, |kx | < kb sin θx =
kb|xM + a|√

(xM + a)2 + (2c + zs + zmin)2

(11a)

Fig. 2. Definition of the array angle used to denote the array aperture size.
(a) θx for the transmitter array and the receiver array when they are located
on the same side of the inversion domain D. (b) θx for the receiver array
when it is located on the opposite side of the transmitter array.

|kx | < kb sin θx =
kb|xM + a|√

(xM + a)2 + (zr − zmin)2
(11b)

where kb is the wavenumber of the background layer in which
the inversion domain is located. Equation (11a) gives the valid
ranges of the wavenumbers for the incident wave and the
scattered wave when the transmitter array and the receiver
array are located on the same side of the inversion domain
D with zs = zr . However, as shown in Fig. 2(b), when the
receiver array is placed on the opposite side of the domain
D, the valid range of the scattered wavenumber is given
in (11b). Because we set zs = zr = zm−1 when the transmitter
array and the receiver array are located on the same side and
zs = zm−1 and zr = zm when they are located on different
sides of the inversion domain D, the incident EM wave and
the scattered wave share the same angle θx . Consequently, k ′

x
and kx vary in the same range. We now let them be subject to
the inequality in (11) in accordance with the transceiver array
aperture size limitation to guarantee both the incident and the
scattered waves can normally propagate and obtain the 2-D
reconstructable spectrum of the scatterer contrast.

In order to vividly show how the reconstructable 2-D
spectrum varies with the transceiver array aperture size, we let
xM take four representative values +∞, 3.5, 1.75, and 0.75 m.
The corresponding four values of θx are 90◦, 60◦, 45◦, and 30◦,
respectively. Fig. 3 shows the four theoretically reconstructable
spectral components of the 2-D scatterer contrasts for different
θx values. Three observations are made here. First, since the
incident EM wave can arrive at the inversion domain D in
either the +ẑ-direction or the −ẑ-direction and the scattered
wave can escape away from it also in either the +ẑ-direction
or the −ẑ-direction, the computed reconstructable spectra have
four different components, which are different from that shown
in [25, Fig. 2]. The ηζ1 and ηζ3 spectral components shown
in Fig. 3(a) and (c) actually display the theoretically recon-
structable spectra of the contrast of the 2-D scatterer when
the EM wave impinges upon it and leaves from it in the same
ẑ-direction. In contrast, the ηζ2 and ηζ4 spectral components
shown in Fig. 3(b) and (d) display the spectra when the
EM wave impinges upon the scatterer and leaves from it in
the opposite ẑ-directions. The positive and negative spatial
frequency variables for η and ζ are actually caused by different
combinations of incident wave directions and scattered wave
directions. For example, Fig. 3(b) and (d) actually shows
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Fig. 3. Different theoretically reconstructable spectral components of the
contrast of the 2-D scatterer embedded inside a multilayered medium when the
transceiver arrays have different aperture sizes. (a) ηζ1 spectral components.
(b) ηζ2 spectral components. (c) ηζ3 spectral components. (d) ηζ4 spectral
components. Each theoretical 2-D spectrum is enclosed within a closed curve.

the same reconstructable 2-D spectrum although the spatial
frequency variable ζ has opposite values. Such a phenomenon
is not observed for a half-space model, as shown in [25,
Fig. 2]. When the multiple reflections from multiple layer
boundaries disappear, the incident wave can only arrive at
the scatterer in a single ẑ-direction and the scattered wave
also leaves from it in a single ẑ-direction. As a result, only
the ηζ2 spectral component remains. Second, for the ηζ1 and
ηζ3 spectral components shown in Fig. 3(a) and (c), the
major spectral contents in the vertical ζ̂ -direction concentrate
in the low-frequency band. However, most spectral contents
in the vertical ζ̂ -direction concentrate in the high-frequency
band for the ηζ2 and ηζ4 spectral components, as shown in
Fig. 3(b) and (d). Such a discrepancy is as we expect. From
a mathematical point of view, ζ1 and ζ3 are equivalent to the
difference of k ′

z and kz of the background layer while ζ2 and
ζ4 are equivalent to the summation of k ′

z and kz . Therefore,
the low-frequency content shows up in the ηζ1 and ηζ3 spectra
due to the wavenumber cancellation while high-frequency
content shows up in the ηζ2 and ηζ4 spectra due to the
wavenumber superposition. From a physical point of view,
if the incident EM wave arrives at the scatterer and leaves
from it in the same direction, the observable spectrum of the
scatterer is squeezed due to the spatial frequency cancellation.
In the extreme case, when the incident wave and the scattered
wave have the exactly same spatial frequency, no spatial
fluctuation of the inversion domain is observed by the EM
waves and thus only the zero frequency content is obtained.
In contrast, if the incident EM wave arrives at the scatterer
and leaves from it in the opposite directions, the scatterer

contrast must exist inside the background layer to reflect the
incident wave. As a result, the high-frequency content of
the scatterer is directly observed. Third, when the transceiver
array aperture size gradually decreases from θx = 90◦ to
θx = 30◦, all four components of the 2-D reconstructable
spectrum show the “lowpass” feature in the horizontal x̂-
direction with the cutoff spatial frequency of 2kb which is
determined by the EM wave frequency, as shown in Fig. 3.
However, in the vertical ẑ-direction, the ηζ1 and ηζ3 spectral
components also show the “lowpass” feature but the ηζ2 and
ηζ4 spectral components show the “bandpass” feature with
the upper limit cutoff spatial frequency of 2kb. From a math-
ematical point of view, according to (11), decreasing θx value
actually narrows down the variation ranges of k ′

x and kx close
to the zero frequency but narrows down the variation ranges
of k ′

z and kz close to kb. Because k ′
x and kx are canceled with

each other in the horizontal x̂-direction for all four spectral
components and k ′

z and kz are canceled with each other in the
vertical ẑ-direction for the ηζ1 and ηζ3 spectral components,
narrowing down their variation ranges will naturally force the
reconstructable 2-D spectrum to converge to the zero spatial
frequency and thus a “lowpass” phenomenon is observed.
In contrast, because k ′

z and kz are superposed with each
other in the vertical ẑ-direction for the ηζ2 and ηζ4 spectral
components, narrowing down their variation ranges close to
kb will naturally force the reconstructable 2-D spectrum to
converge to the frequency of 2kb and thus a “bandpass”
phenomenon is observed. From a physical point of view,
decreasing the transceiver array aperture size is equivalent to
retaining the energy of both the incident wave and the scattered
wave in the vertical ẑ-direction but reducing their energy in
the horizontal x̂-direction, which automatically deteriorates the
horizontal resolution of the reconstruction. Meanwhile, the
maximum ζ̂ -direction spatial frequency of the reconstructable
2-D spectrum remains unchanged no matter how the array
aperture size is changed since the scatterer can always be
illuminated by the vertical incident and reflected waves.

Fig. 4 shows the overall reconstructable spectra of the
2-D scatterer for different transceiver array aperture sizes.
An overall spectrum is the superposition of four components
shown in Fig. 3 and different colors represent the contributions
from different components. Two points must be emphasized
here. First, when θx becomes 90◦, i.e., the array aperture size
is infinitely large, the theoretically reconstructable spectrum
becomes an ideal circular disk with the radius of 2kb, as shown
in Fig. 4(a). An infinitely large array aperture size means
the 2-D scatterer can be illuminated by the EM waves from
360◦ and the scattered waves also leave from the scatterer in
360◦. Therefore, the observable spectrum reaches the max-
imum value 2kb in 360◦. Second, reducing the transceiver
array aperture size leads to the “bandstop” feature of the
reconstructable spectrum in the vertical ẑ-direction. When
the incident and scattered wave vectors gradually approach
the vertical ẑ-direction, the reflected wave from the scatterer
detects its spatially high-frequency variations while the trans-
mitted wave passing through the scatterer detects its spatially
low-frequency variations, which leads to the “bandstop” fea-
ture in the vertical ẑ-direction.
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Fig. 4. Overall theoretically reconstructable spectrum of the 2-D scatterer
embedded inside a multilayered medium when the transceiver array has the
aperture size with (a) θx = 90◦, (b) θx = 60◦, (c) θx = 45◦, and (d) θx = 30◦.

IV. INFLUENCE OF TRANSCEIVER ARRAY APERTURE SIZE
ON 2-D FWI IN MULTILAYERED MEDIA: SVD ANALYSIS

In this section, we will focus on more practical 2-D EM
inverse scattering scenarios in the circumstance of multilay-
ered media. Specifically speaking, we will keep investigating
how the transceiver array aperture size influences the recon-
struction of 2-D scatterers embedded inside a multilayered
medium but with the effects of wave attenuation and evanes-
cent mode taken into account. As a result, the relationship
between the spectrum of the scattered EM field recorded at
the receiver array and the reconstructable spectrum of the 2-D
scatterers described in (10) is no longer precise. Therefore, the
SVD method proposed in [25, Section IV] is adopted to search
for the solution of χ for the EM inverse scattering problem
described in (6).

We first define the linear integral operator I mapping the
contrast χ distribution inside the 2-D inversion domain D to
the scalar scattered electric field data recorded at the receiver
array

I : χ ∈ M → E sct
y ∈ D (12)

where M is the model space within which the best solution of
χ is searched for and D is the data space in which the scalar
scattered electric field data distributes. In addition, both M
and D can be treated as Hilbert spaces and thus the L2 inner
products denoted by ⟨·, ·⟩M and ⟨·, ·⟩D can be defined for
them, respectively [25]. Meanwhile, the SVD operation is
allowed to apply to I since it acts on M and D continuously
and can be treated as a compact operator [31]. Therefore,
we define the singular system {6n,Un,Vn}

∞

n=1 of the operator
I where 6n is the nth singular value, Un is the nth left-singular

function, and Vn is the nth right-singular function. Therefore,
the reconstructed contrast χ in (6) can be written as [31]

χ =

∞∑
n=1

1
6n

< Esct
y , Un >D Vn (13)

where 6n is ordered in descending with the increase of n, χ

is a column vector containing all the contrast values in the
2-D inversion domain, and Esct

y is a column vector containing
the scalar scattered electric field values sampled in all the
receiver points. One should note that the major performance of
the operator I is determined by its large singular values and
small ones easily lead to the solution instability due to the
numerical error in the computation. Therefore, the truncated
SVD expansion is used to suppress the amplification of the
scattered field data error and thus approximate the stable
contrast solution of the 2-D scatterer [32]

χ ≈

N∑
n=1

1
6n

< Esct
y , Un >D Vn (14)

where N is the threshold for singular values and determined
by a hypothetical signal noise ratio (SNR). We then discretize
the inversion domain D into P × Q rectangular pixels and
numerically perform the SVD since the operator I is con-
tinuous. Meanwhile, we expand the contrast function χ by
1-D piecewise constant functions in both the x̂-direction and
ẑ-direction

χ(x, z) =

∑
p,q

χpq ·5(x − x p;1x) ·5(z − zq;1z) (15)

where 1x = (2a/P) and 1z = (2c/Q) are the sup-
ports of the 1-D piecewise constant functions in the x̂- and
ẑ- directions, respectively, and χpq is the expansion coefficient.
By substituting (15) into (6) and separately executing

∫
D{·}dx

and
∫

D{·}dz with respect to χ based on the expression of V h
i

given in Appendix A, we obtain

φ̂ p = 2
sin

[
(k ′

x − kx )
(
1x
2

)]
k ′

x − kx
e− j (k ′

x −kx )x p (16a)

ψ̂
(1)
q,2 = ψ̂

(1)
q,4 = ψ̂

(2)
q,1 = ψ̂

(2)
q,2 = ψ̂

(2)
q,4

= 2
sin

[
(k ′

zm − kzm)
(
1z
2

)]
k ′

zm − kzm
e− j (k ′

zm−kzm )zq (16b)

ψ̂
(1)
q,1 = ψ̂

(1)
q,3 = ψ̂

(1)
q,5 = ψ̂

(2)
q,3 = ψ̂

(2)
q,5

= 2
sin

[
(k ′

zm + kzm)
(
1z
2

)]
k ′

zm + kzm
e− j (k ′

zm+kzm )zq (16c)

ψ̂
(1)
q,6 = ψ̂

(1)
q,8 = ψ̂

(1)
q,10 = ψ̂

(2)
q,8 = ψ̂

(2)
q,10

= 2
sin

[
(k ′

zm − kzm)
(
1z
2

)]
k ′

zm − kzm
e j (k ′

zm−kzm )zq (16d)

ψ̂
(1)
q,7 = ψ̂

(1)
q,9 = ψ̂

(2)
q,6 = ψ̂

(2)
q,7 = ψ̂

(2)
q,9

= 2
sin

[
(k ′

zm + kzm)
(
1z
2

)]
k ′

zm + kzm
e j (k ′

zm+kzm )zq (16e)

where x p and zq are the central coordinates of the 1-D constant
functions. The superscript and subscript of ψ̂q indicate the
relative positions of the transmitter array and the receiver array
and which spectral component is invoked, respectively. For
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example, ψ̂ (2)
q,8 means the transmitter array and the receiver

array are located on two sides of the inversion domain D and
the ηζ3 spectral component corresponding to χ̂ (2)8 in (7d) is
invoked. Finally, by substituting (16) into (6), we obtain the
approximation

E sct
y (ρr , ρs) ≈

jωϵbε0

4π2

∑
p,q

χpq

∫ ∫
+∞

−∞

φ̂ p(k ′

x , kx )

·

10∑
n=1

[
fn(k ′

x , kx ) · ψ̂q,n(k ′

x , kx )
]

· e− j (kx xr −k ′
x xs )dk ′

x dkx (17)

in which ψ̂q,n can take ψ̂ (1)
q,n or ψ̂ (2)

q,n and the EM wave
reflections and transmissions in multiple layer interfaces are
completely reflected in fn . By sampling the scattered electric
fields in a series of discrete points xr at the z = zr horizontal
line when the excitation line sources are also located in a series
of discrete points xs at the z = zs line, we can rewrite (17) in
a compact form

Esct
y = Aχ (18)

where A with the dimensions of Nt x Nr x × P Q is actually
the discrete matrix form of the integral operator I. Here, Nt x

and Nr x respectively represent the transmitter and receiver
numbers in the horizontal x̂-direction. Note that we let them
be exactly the same in this work to guarantee the transmitter
array and the receiver array are completely overlapped or
placed symmetrically to the inversion domain D. In addition,
the interval between two adjacent discrete points xr at the
z = zr horizontal line and that between two adjacent discrete
points xs at the z = zs horizontal line are 0.25 m. This
spatial sampling density of four points per wavelength is able
to guarantee computation accuracy according to the Nyquist
sampling theorem.

Now, let us still choose the four representative transceiver
array aperture sizes adopted in Section III but replace θx =

90◦ with θx = 88◦ to avoid the difficulty in implementing
numerical simulation, and apply SVD to the corresponding A
matrices to compute the singular value distributions and the
right-singular functions. Meanwhile, we assume the planarly
layered background medium has the conductivity values σ 1

b =

0.002 S/m, σ 3
b = 0.001 S/m, and σ 5

b = 0.003 S/m to account
for the wave attenuation. Other model parameters and the oper-
ation frequency are the same as those mentioned in Section III.
Because the reconstructed contrast distribution is manifested
by the right-singular functions based on (14), we apply the
Fourier transforms to the first N right-singular vectors and
their summation actually represents the 2-D spectrum of the
contrast. Therefore, we define the spectrum

sp(η, ζ ) =

N∑
n=1

∣∣∣Ṽn(η, ζ )

∣∣∣ (19)

where

Ṽn(η, ζ ) =

∫
D

Vn(x, z) exp[− j (ηx + ζ z)]dxdz

=

∑
p,q

Vn(x p, zq) exp[− j (ηx p + ζ zq)]1S (20)

in which 1S is the area of each discrete pixel in the inversion
domain and the ranges of η and ζ are set as −50 ≤ η, ζ ≤ 50.
Note that this range for η and ζ is large enough to incorpo-
rate all the spectral contents obtained from both theoretical
analysis and SVD analysis according to (7a) and (11) as
well as the background dielectric parameters and operation
frequency. In addition, in order to guarantee the stability
of the computed spectrum, N in (19) is set according to
−20 dB SNR, i.e., the minimum singular value used in the
computation is greater than 10% of the largest singular value
61. The obtained normalized singular value variations and
spectra of right-singular functions for different array aperture
sizes and different spectral components when the transmitter
array and the receiver array are located on the same side
and on two sides of the inversion domain are shown in
Figs. 5 and 6, respectively. Four observations are made here.
First, the computed spectra of the right-singular functions are
roughly consistent with the theoretically reconstructable ones
for all four components no matter whether the transmitter
and receiver arrays are located on the same side or different
sides of the inversion domain. All spectra show the “lowpass”
feature in the horizontal x̂-direction but the “bandpass” feature
in the vertical ẑ-direction with the decrease in the transceiver
array aperture size. The smaller is the array aperture size, the
less singular values are observed for a certain SNR threshold.
Second, the smaller is the array aperture size, the more spectral
contents of the right-singular functions exceed the boundaries
of the theoretically reconstructable spectra. This is because
we have assumed that the major energy of the incident and
scattered EM fields concentrates in the plane waves and the
reflections in multiple layer boundaries are omitted when the-
oretically reconstructable spectra are evaluated. However, for
the numerical computation of right-singular function spectra,
the contributions from both 2-D line source Green’s functions
and multiple layer reflections are taken into account. As a
result, the smaller is the array aperture size, the more extra
spectral contents generated by the additional contribution from
the cylindrical waves excited by line sources and multiple layer
reflections are superposed to the theoretically reconstructable
spectra. Third, although ηζ1 and ηζ3 spectral components
concentrate in the low-frequency band and ηζ2 and ηζ4 spec-
tral components concentrate in the high-frequency band, the
ηζ1 and ηζ3 spectral components have more singular values
than the ηζ2 and ηζ4 spectral components for a certain SNR
threshold and thus the broader bandwidth, no matter whether
the transmitter and receiver arrays are located on the same
side or different sides of the inversion domain. The ηζ1 and
ηζ3 spectral components correspond to the physics picture
that the EM wave penetrates the scatterer while the ηζ2 and
ηζ4 spectral components correspond to the physics picture
that the EM wave is reflected by the scatterer. Therefore,
the ηζ1 and ηζ3 spectral components naturally have broader
bandwidth since the scatterer is more thoroughly illuminated
by transmitting waves. Fourth, the ηζ1 and ηζ3 spectral
components are exactly the same when the transmitter and
receiver arrays are located on the same side of the inversion
domain while the ηζ2 and ηζ4 spectral components are exactly
symmetrical when the transmitter and receiver arrays are
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Fig. 5. Singular values of the discretized integral operator obtained by SVD and comparisons of the 2-D spectra of the corresponding right-singular functions
and 2-D theoretically reconstructable contrast spectra for four representative aperture sizes when the transmitter array and the receiver array are located on
the same side of the inversion domain. Different rows show different spectral components. The first column shows the singular values of different spectral
components. Columns 2–5 show the 2-D spectra for different aperture sizes. Each theoretical 2-D spectrum is enclosed with a closed black curve.

Fig. 6. Singular values of the discretized integral operator obtained by SVD and comparisons of the 2-D spectra of the corresponding right-singular functions
and 2-D theoretically reconstructable contrast spectra for four representative aperture sizes when the transmitter array and the receiver array are located on two
sides of the inversion domain. Different rows show different spectral components. The first column shows the singular values of different spectral components.
Columns 2–5 show the 2-D spectra for different aperture sizes. Each theoretical 2-D spectrum is enclosed with a closed black curve.

located on two sides of the inversion domain. These high
consistencies are caused by the exactly same wave propagation
picture inside the inversion domain. In addition, either the
ηζ1 or ηζ3 spectral component is exactly self-symmetrical with

respect to ζ = 0 when the transmitter and receiver arrays
are located on two sides of the inversion domain. This is
because the transmitter and receiver arrays are placed exactly
symmetrical about the inversion domain.
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Fig. 7. Singular values of the discretized integral operator obtained by SVD and comparisons of the 2-D spectra of the corresponding right-singular functions
and 2-D theoretically reconstructable contrast spectra for four representative aperture sizes when the transmitter array and the receiver array are located
(a)–(e) on the same side of the inversion domain and (f)–(j) on two sides. The first column shows the singular values. Columns 2–5 show the overall 2-D
spectra for different aperture sizes. Each overall theoretical 2-D spectrum is enclosed with closed black curves.

Fig. 7 shows comparisons of the overall spectra of the
right-singular functions and the overall theoretical 2-D spectra
as well as the corresponding singular value variations. As we
expect, the overall spectra have the obvious “bandstop” feature
in the vertical ẑ-direction, but still show the “lowpass” feature
in the horizontal x̂-direction. They have strong symmetry
in the vertical direction when the transmitter array and the
receiver array are placed on two sides of the inversion domain.
In contrast, the spectral energy intensely concentrates in the
upper half-space in the ηζ plane when the transmitter array and
the receiver array are placed on the top side of the inversion
domain. Such an asymmetry is as we expect. Because both
the transmitter array and the receiver array are placed on the
same side, the directly reflected EM wave from the scatterer
of course will dominate in the inversion. The influence of
the EM wave transmitting the scatterer and finally reflected
back by another boundary will be weakened. Another inter-
esting observation is that the overall reconstructable spectral
bandwidth manifested via the right-singular functions for a
small transceiver array aperture size when the transmitter and
receiver arrays are placed on two sides of the inversion domain
is wider than that when the transmitter and receiver arrays are
placed on the same side. For a smaller array aperture size,
the scatterer is illuminated more thoroughly if the transmitter
and receiver arrays are placed on two sides and thus the
reconstructable spectral bandwidth is wider. However, this
superiority will be lost if the array aperture size becomes very
large, e.g., θx = 88◦ since in this situation the scatterer still can
be illuminated thoroughly from the left and right sides even
when both the transmitter and the receiver arrays are placed
on the top side.

V. INFLUENCE OF TRANSCEIVER ARRAY APERTURE SIZE
ON 2-D FWI IN MULTILAYERED MEDIA:

NUMERICAL VALIDATION

In this section, the theoretical analysis results and the SVD
analysis results presented in Sections III and IV are validated

by several numerical experiments. We use the same inversion
configurations adopted in Section III but place a series of
rectangular scatterers inside the inversion domain, as shown
in Fig. 8(a) and (f). All scatterers have the same dielectric
parameters εs = 9.2 and σs = 1.2 mS/m. In addition, the
spatial fluctuation from the left column to the right column for
the scatterers becomes faster and faster. The scattered electric
fields recorded at the receiver array are synthesized by the
stabilized biconjugate-gradient fast Fourier transform (BCGS-
FFT) solver [33]. The FWI is accomplished by the conjugate
gradient solver based on the sensitivity matrix directly assem-
bled by incident fields, i.e., based on Born approximation.
Fig. 8(b)–(e) shows the reconstructed 2-D profiles of the
contrast moduli for four representative aperture sizes when
the transmitter array and the receiver array are located on the
same side of the inversion domain while Fig. 8(g)–(j) shows
the results when the transmitter array and the receiver array
are located on two sides. Three observations are made. First,
the “lowpass” phenomenon is obvious in the horizontal x̂-
direction. The smaller is the transceiver array aperture size, the
more obscure are the boundaries of the reconstructed contrast
profiles in the horizontal direction. Second, the “bandstop”
phenomenon is obvious in the vertical ẑ-direction. As shown
in Fig. 8(i), both the reconstructed leftmost and rightmost
scatterer columns are discernible. In contrast, the reconstructed
profiles of the two middle columns are obscure. Such a
difference can also be seen in Fig. 8(d) and (j) although the
high spatial frequency contents in the reconstructed leftmost
and rightmost scatterer columns are partially filtered out due
to the one-side layout of the transceiver array or a small
array aperture size. Third, for small array aperture sizes,
the reconstructed scatterer profiles when the transmitter array
and the receiver array are placed on the same side of the
inversion domain are worse than those when they are placed on
two sides. However, this discrepancy almost disappears when
θx becomes 88◦. The reason for these phenomena has been
explained in Section IV.
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Fig. 8. Ground truth (a) permittivity profile and (f) conductivity profile of the 2-D scatterers and the reconstructed contrast moduli profiles for the four
representative transceiver aperture sizes when the transmitter array and receiver array are placed on (b)–(e) the same side of the inversion domain and
(g)–(j) two different sides.

VI. CONCLUSION AND FUTURE WORK

In this work, for the first time, we have investigated how
the transceiver array aperture size influences the reconstruction
of 2-D scatterers embedded inside a planarly multilayered
medium via both theoretical analysis and SVD analysis.
Detailed mathematical formulas are derived to correlate the
scattered electric field spectrum and the reconstructable spec-
trum of the scatterer when the multiple reflections and
transmissions in layer boundaries are taken into account.
The predicted results are verified by a series of numerical
experiments. Compared with the results for the influence of
transceiver array aperture size on the reconstruction of 2-D
scatterers buried only in the subsurface region given in the
previous work, both similarities and differences exist. The
most significant similarity is the “lowpass” feature of the
reconstructable spectra in the horizontal direction which actu-
ally is determined by the array aperture size. In contrast, the
most significant difference is the vertical “bandstop” feature
of the reconstructable spectrum of the scatterer embedded
inside a planarly multilayered medium but the vertical “band-
pass” feature of the reconstructable spectrum of the scatterer
buried in the subsurface region. The “bandstop” spectrum
is caused by the superposition of four spectral components
which are generated by multiple reflections and transmissions
in multiple layer boundaries and correspond to four different
EM wave propagation pictures inside the inversion domain.
In a half-space model, only one wave propagation picture
remains since the multiple reflections vanish. Consequently,
the “bandstop” feature degenerates into the “bandpass”
feature.

There is a crucial issue that has not been addressed in
this work. The influence of layer configurations, i.e., the
dielectric parameters and the positions of layer boundaries,

on the reconstructable spectra of 2-D scatterers embedded
inside a planarly multilayered medium. The layer medium
parameters and boundary positions mainly affect the reflec-
tion and transmission coefficients which are manifested by
fn in (8). Because we have assumed that all background
layer parameters and boundary positions are fixed in this
work, how the variation of fn influences the reconstructable
spectra is not studied. The future work will be focused on
the computation of reconstructable spectra based on SVD for
different spectral components and also the overall values when
fn takes different combinations. Other factors such as spatial
sampling density of the transceivers for scattered electric
fields, multifrequency data that have significant impacts on
the reconstructable spectra [25], [26], [27], [28], [29], and
the effect of the different aperture sizes of the transmitter
array and the receiver array when they are placed on two
different sides of the inversion domain will also be studied
in the circumstance of multilayered media in our future work.
Finally, it is worth mentioning the Born approximation adopted
in this work. Both the theoretical and the numerical results
presented in this work only adapt to weak EM scattering.
Another future research branch is to remove the restriction
of Born approximation and study how the array aperture size
influences the inversion performance when the scatterers have
high contrasts.

APPENDIX A

It is assumed the transmitter array is located inside the pth
layer, i.e., z p−1 < zs < z p, the receiver array is located inside
the qth layer, i.e., zq−1 < zr < zq , and the inhomogeneous
scatterers are located inside the mth layer, i.e., zm−1 < z < zm .
Based on [30, Eq. (28)], the voltage at a certain field point
(x, z) inside the mth layer excited by a current source in the
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pth layer is

V h
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Z h
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2
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⇀
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p Eh
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3p+Eh
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if p = m, and
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i (z) =
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if p < m, and
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]
(A3)

if p > m. Note that V h
i (z p) in (A2) and V h

i (z p−1) in (A3) are
evaluated using (A1). The subscript of V h

i denotes the current
in the transmission line while i in the product is just an index.
The mathematical expressions of Z h

p, Eh
0p, Dh

p, Eh
1p, Eh

2p, Eh
3p,

Eh
4p, ↼0

h
m , and ⇀

0
h
m can be found in [34, Section V]. di =

zi − zi−1 represents the thickness of the i th layer. In addition,
k2

zi + k2
x = k2

i = ϵi
bk2

0 holds with k0 being the wavenumber
in free space. In addition, it is understood that the products
in (A2) and (A3) are set to be one if the lower limit exceeds
the upper limit.

APPENDIX B

The excitation source of each transmitter is assumed to be an
infinitesimal dipole with the unit current moment. Therefore,
its current density Jy(ρs) is one. Based on the expression of
V h

i given in Appendix A, when the transmitter array and the
receiver array are located on the same side of the mth layer
with p < m and q < m, we have

V h
i (kx , zr , z)V h

i (k
′

x , z, zs) =

10∑
n=1

f (1)n · I (1)n (B1)

where
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p e− jk ′
zp(z p−zs )+

↼
0

h′

p e− jk ′
zp(z p+zs−2z p−1)

+
⇀
0

h′

p
↼
0

h′

p e− jk ′
zp(2dp+z p−zs )

+
⇀
0

h′

p
↼
0

h′

p e− jk ′
zp(2dp+zs−z p)

]}

×

m−1∏
i=p+1

(
1+

⇀
0

h′

i

)
e− jk ′

zi di

1+
⇀
0

h′

i e− j2k ′

zi di
(B4b)

fm>q =
ωµ0

2kzm
×

1(
1+

↼
0

h
q e− j2kzq dq

)
e jkzq (zq−zr )

×

[
1+

↼
0

h
q e− j2kzq (zr −zq−1)

]
×

m−2∏
i=q

(
1+

↼
0

h
i

)
e− jkzi di

1+
↼
0

h
i e− j2kzi di

(B4c)

where ↼
0

h
i and ⇀

0
h
i are the TE-mode left and right global

reflection coefficients in the i th layer, respectively, di =

zi − zi−1 is the thickness of the i th layer, and the superscript
apostrophe means the EM wave is emitted from the source
point at (xs , zs). Note that the definitions and derivations of
all the variables used in (B3) and (B4) can be found in [34,
Section V]. The coefficient f ′

p<m depicts the wave propagation
from the source point at (xs , zs) in the pth layer to the mth
layer with p < m. In contrast, the coefficient fm>q depicts the
wave propagation from the mth layer to the receiver point at
(xr , zr ) in the qth layer with m > q .

Now, let us shift to the EM scattering scenario in which
the transmitter array and the receiver array are located on two
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sides of the scatterer inside the mth layer with p < m < q.
In this situation, we have

V h
i (kx , zr , z)V h

i (k
′

x , z, zs) =

10∑
n=1

f (2)n · I (2)n (B5)

where

I (2)1 = I (2)2 = I (2)4 = e− j(k ′
zm−kzm)z (B6a)

I (2)3 = I (2)5 = e− j(k ′
zm+kzm)z (B6b)

I (2)6 = I (2)7 = I (2)9 = e j(k ′
zm+kzm)z (B6c)

I (2)8 = I (2)10 = e j(k ′
zm−kzm)z (B6d)

and

f (2)1 = fm<q · f ′

p<m · e jk ′
zm zm−1− jkzm zm (B7a)

f (2)2 = fm<q · f ′

p<m ·

⇀
0

h
m

Dh
m

e jk ′
zm zm−1− jkzm zm (B7b)

f (2)3 = f ′

p<m ·

↼
0

h
m

Dh
m

e jk ′
zm zm−1− jkzm (dm−zm−1) (B7c)

f (2)4 = fm<q · f ′

p<m ·

⇀
0

h
m
↼
0

h
m

Dh
m

e jk ′
zm zm−1− jkzm (zm+2dm ) (B7d)

f (2)5 = fm<q · f ′

p<m ·

⇀
0

h
m
↼
0

h
m

Dh
m

e jk ′
zm zm−1− jkzm (zm−2zm−1) (B7e)

f (2)6 = fm<q · f ′

p<m ·
⇀
0

h′

m e jk ′
zm zm−1− jkzm zm− j2k ′

zm zm (B7f)

f (2)7 = fm<q · f ′

p<m ·

⇀
0

h
m
⇀
0

h′

m

Dh
m

e jk ′
zm (zm−1−2zm )− jkzm zm (B7g)

f (2)8 = fm<q · f ′

p<m ·

↼
0

h
m
⇀
0

h′

m

Dh
m

· e jk ′
zm (zm−1−2zm )− jkzm (zm−2zm−1) (B7h)

f (2)9 = fm<q · f ′

p<m ·

⇀
0

h
m
↼
0

h
m
⇀
0

h′

m

Dh
m

· e jk ′
zm zm−1− j(2k ′

zm+kzm)zm− j2kzm dm (B7i)

f (2)10 = fm<q · f ′

p<m ·

⇀
0

h
m
↼
0

h
m
⇀
0

h′

m

Dh
m

· e jk ′
zm (zm−1−2zm )− jkzm (zm−2zm−1) (B7j)

where

fm<q =
ωµ0

2kzm
×

1(
1+

⇀
0

h
q e− j2kzq dq

)
e jkzq (zr −zq−1)

×

[
1+

⇀
0

h
q e− j2kzq (zq−zr )

]
×

q−1∏
i=m+1

(
1+

⇀
0

h
i

)
e− jkzi di

1+
⇀
0

h
i e− j2kzi di

(B8)

is the coefficient depicting the wave propagation from the mth
layer to the receiver point at (xr , zr ) in the qth layer with
m < q .
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